
 1

Tagging Communication Problems in Spoken Dialogue Systems:
On-line or Off-line?

Laila Dybkjær and Niels Ole Bernsen
Natural Interactive Systems Laboratory, University of Southern Denmark

Science Park 10, 5230 Odense M, Denmark
laila@nis.sdu.dk, nob@nis.sdu.dk

Abstract

The paper describes our work on tagging
communication problems in human-
computer shared-goal spoken dialogues.
The coding scheme is not otherwise re-
stricted to a particular task or domain. The
tag-set is rooted in a set of co-operativity
guidelines. Tagging is done off-line at de-
sign time. The purpose is to discover
problems early in the dialogue develop-
ment process in order to prevent them
from occurring in later versions of the
dialogue. We describe the coding scheme
and its application and discuss the issue of
on-line versus off-line tagging of commu-
nication problems.

1 Introduction

The increasing number of advanced spoken lan-
guage dialogue systems (SLDSs) which support
people in carrying out ordinary tasks, such as
flight/train timetable consultation, ticket booking,
or directory inquiry, demands rigorous methods
and tools for identifying, analysing, preventing,
and repairing problems in spoken human-machine
interaction. Annotation of communication prob-
lems in spoken dialogue corpora not only helps
developers and researchers extract information on
the deficiencies of emerging dialogue interaction
models, but may also yield clues as to how these
might be improved.

Communication problems, if detected by users,
typically lead to clarification or repair meta-
communication. This is usually not really a prob-

lem in human-human dialogue. However, with cur-
rent SLDS technology the possibility of real-time
handling of clarification and repair meta-
communication is still seriously limited. In particu-
lar, user needs for clarification meta-
communication that arise from the way the system
addresses its domain, can easily surpass the sys-
tem’s meta-communication skills.

We were faced with exactly this kind of prob-
lems while designing, implementing, and testing
the dialogue model for the Danish dialogue system
(Bernsen et al. 1998) which was a Danish domestic
flight ticket reservation system. In the process of
analysing collected (Wizard of Oz-simulated) hu-
man-computer dialogues, we developed a coding
scheme for markup of communication problems.
This scheme facilitated and made more systematic
our analysis of dialogues and the resulting propos-
als for dialogue model improvements. In Section 2
we describe the background for, and the develop-
ment of, the communication problems coding
scheme. Section 3 presents the coding scheme it-
self. Section 4 discusses applications of the coding
scheme. Section 5 concludes the paper by discuss-
ing the issue of on-line versus off-line tagging.

2 Background of the Coding Scheme

Communication problems are different in several
respects from most other phenomena that are usu-
ally annotated and studied in a spoken dialogue
corpus. Most notably, communication problems
need not necessarily be present in a corpus at all.
In fact, the fewer there are, the better. This is in
direct contrast with, e.g., prosodic and morpho-
syntactic phenomena, or dialogue acts, which are
present in any spoken dialogue corpus. To a large
extent, the same is true for co-reference. All these

 2

phenomena are among the building blocks of spo-
ken dialogue. Communication problems, on the
other hand, are disruptive to the dialogue and co-
operative human interlocutors usually try to avoid
them. In particular for SLDSs, co-operative system
communication is important for avoiding commu-
nication problems which often lead to user dia-
logue behaviour with which the system cannot
cope.

2.1 Existing Coding Schemes

Annotation of communication problems is clearly
in its infancy. In fact, we are not aware of other
coding schemes which are particularly tailored to
the identification and description of communica-
tion problems. However, aspects of communica-
tion problems are quite often reflected in coding
schemes for other levels of spoken dialogue. Such
schemes do not have a direct focus on communica-
tion problems. Rather, they include phenomena
that relate to the level in focus, e.g. co-reference or
dialogue acts, as well as to communication prob-
lems, cf. (Mengel et al. 2000). This is perhaps not
surprising given the cross-level nature of commu-
nication problems. Thus, some communication
problems are caused by flawed grammar or vo-
cabulary design, i.e., errors at the morpho-syntactic
level. Other problems may be due to misinterpreta-
tion or non-interpretation of co-reference, and so
on.

2.2 Development and Test of the Coding
Scheme for Communication Problems

The coding scheme for communication problems
to be discussed in this paper grew out of our analy-
sis of Wizard of Oz-simulated human-computer
dialogues. The aim of the analysis was exactly to
detect communication problems and, on this basis,
to improve the dialogue model. As a bi-product,
the coding scheme was developed as described in
the following.

The dialogue model of the Danish dialogue sys-
tem mentioned in Section 1 was developed using
the Wizard of Oz (WOZ) simulation method. In
the process of analysing the collected dialogues we
established a set of guidelines for the design of
cooperative spoken dialogue. Each observed prob-
lem was considered a case in which the system, in
addressing the user, had violated a guideline of
cooperative dialogue. The WOZ corpus analysis

led to identification of 14 guidelines of cooperative
spoken human-machine dialogue based on analysis
of 120 examples of user-system interaction prob-
lems. If those guidelines were observed in the de-
sign of the system’s dialogue behaviour, we
assumed, this would increase the smoothness of
user-system interaction and reduce the amount of
user-initiated meta-communication needed for
clarification and repair.

During the development of our 14 co-
operativity guidelines, we were not aware of the
potential relevance of Grice’s work. Upon discov-
ering that relevance, the guidelines were refined
and consolidated through comparison with Grice’s
well-established body of maxims of cooperative
human-human dialogue which turned out to form a
subset of our guidelines (Grice 1975, Bernsen et al.
1996). The resulting 22 guidelines were grouped
under seven different aspects of dialogue, such as
informativeness and partner asymmetry, and split
into generic guidelines and specific guidelines, cf.
Figure 1. The specific guidelines are a refinement
of the generic ones, and are thus subsumed by the
latter. The generic guidelines are more general and
express what to do or take into account when
communicating. The specific guidelines specialise
the generic guideline by which they are subsumed
to certain classes of phenomena, explain how to do
something expressed by the generic guideline, and
are specifically aimed at system design. Although
subsumed by generic guidelines, the specific
guidelines are important in interaction design be-
cause they serve to elaborate on the kind of inter-
action model that the developer should be looking
for when designing co-operative system dialogue
behaviour.

It should be noted that not every generic guide-
line subsumes some specific guideline(s), and the
specific guidelines do not add up to, or replace, the
generic guideline by which they are subsumed. A
given communication problem should always be
described, if possible, by referring to the violation
of a specific guideline if there is one which fits.
Otherwise, the reference should be to a generic
guideline.

The consolidated guidelines were then tested by
using them in the diagnostic evaluation of a corpus
of 57 dialogues collected during a scenario-based,
controlled user test of the implemented system.

 3

Dialogue
Aspect

GG
No.

SG
No.

Generic or Specific Guideline

Group 1
Informativeness

GG1 *Make your contribution as informative as is required (for the current pur-
poses of the exchange).

 SG1 Be fully explicit in communicating to users the commitments they have
made.

 SG2 Provide feedback on each piece of information provided by the user.
 GG2 *Do not make your contribution more informative than is required.

Group 2 GG3 *Do not say what you believe to be false.
Truth and evidence GG4 *Do not say that for which you lack adequate evidence.
Group 3
Relevance

GG5 *Be relevant, i.e. be appropriate to the immediate needs at each stage of the
transaction.

Group 4 GG6 *Avoid obscurity of expression.
Manner GG7 *Avoid ambiguity.
 SG3 Provide same formulation of the same question (or address) to users eve-

rywhere in the system’s dialogue turns.
 GG8 *Be brief (avoid unnecessary prolixity).
 GG9 *Be orderly.

Group 5
Partner asymmetry

GG10 Inform the dialogue partners of important non-normal characteristics which
they should take into account in order to behave cooperatively in dialogue.
Ensure the feasibility of what is required of them.

 SG4 Provide clear and comprehensible communication of what the system can
and cannot do.

 SG5 Provide clear and sufficient instructions to users on how to interact with the
system.

Group 6 GG11 Take partners’ relevant background knowledge into account.
Background knowl-
edge

 SG6 Take into account possible (and possibly erroneous) user inferences by
analogy from related task domains.

 SG7 Separate whenever possible between the needs of novice and expert users
(user-adaptive dialogue).

 GG12 Take into account legitimate partner expectations as to your own back-
ground knowledge.

 SG8 Provide sufficient task domain knowledge and inference.

Group 7
Repair and

GG13 Enable repair or clarification meta-communication in case of communica-
tion failure.

clarification SG9 Initiate repair meta-communication if system understanding has failed.
 SG10 Initiate clarification meta-communication in case of inconsistent user input.
 SG11 Initiate clarification meta-communication in case of ambiguous user input.
Figure 1. Guidelines for cooperative system dialogue. GG means generic guideline. SG means specific
guideline. Generic guidelines are expressed at the same level of generality as are the Gricean maxims
(marked with an *). Each specific guideline is subsumed by a generic guideline. The left-hand column
characterises the aspect of dialogue addressed by each guideline.

The fact that we had the scenarios at hand
meant that problems of dialogue interaction could
be objectively detected through comparison be-
tween expected (according to the scenario) and

actual user-system exchanges. Each detected prob-
lem was (a) characterised with respect to its symp-
tom, i.e. the spoken dialogue exchange that
demonstrated that something was amiss; (b) a di-

 4

agnosis of the problem was made, sometimes
through inspection of the log of system module
communication; and (c) one or several cures for
the problem were proposed. The ‘cure’ part of di-
agnostic analysis suggests ways of repairing the
system’s dialogue behaviour. In addition, the diag-
nostic analysis may demonstrate that a new guide-
line for cooperative dialogue design must be added
to the guidelines set, thus enabling continuous as-
sessment of the scope of the tag set.

We found that nearly all communication prob-
lems in the user test could be classified as viola-
tions of our guidelines. Two specific guidelines on
meta-communication, SG10 and SG11 (Figure 1),
had to be added, however. This was no surprise as
meta-communication had not been simulated and
thus was mostly absent in the WOZ corpus.

2.3 Scope of the Coding Scheme

The NISLab annotation scheme cannot be claimed
to account for all possible communication prob-
lems. It was created with the purpose of improving
spoken language dialogue system design and, so
far, it has only been tested on dialogues which
were:

• shared-goal,

• human-computer, and

• two-participant dialogue.

Thus, the NISLab scheme is not claimed to be
valid for human-human dialogues and non-shared
goal dialogues since it has not been tested for these
conditions.

Shared-goal dialogues are dialogues in which
the interlocutors collaborate to achieve a common
goal, such as booking a ferry ticket or getting/ pro-
viding information about flight arrivals. Generally
speaking, today’s spoken language dialogue sys-
tems are shared-goal systems which take for
granted that the user’s goal is to carry out (one of)
the task(s) that the system can support. Shared-goal
dialogue may be contrasted with general conversa-
tion which is subject to possible conflicting goals
and intentions among the participants.

Human-human dialogue has many more facets
than today’s spoken human-machine dialogue is
capable of handling. Therefore, we cannot discount
the possibility that there are communication prob-
lems in human-human dialogue which might call
for additional guidelines for co-operative dialogue

behaviour compared to those in Figure 1. Human-
human communication problems may, for instance,
derive from conflicting goals/intentions, talking
‘above one’s head’, lying, and hidden agendas, not
to speak of the full gamut of natural interactivity
issues, such as facial or gesture communication
misunderstandings. Whether such potential prob-
lems in understanding between humans in dialogue
can be captured by the annotation scheme devel-
oped and described here is still an open question.
However, extending the current set of guidelines
will be easy to do by using the coding module pre-
sented in Section 3.

So far, the coding scheme has been tested only
on two-participant dialogues. Spoken human-
computer dialogue is normally between one human
and one machine but multi-party human-human-
machine dialogue is now advancing towards the
top of the research agenda world-wide. It may
seem likely that the communication problems will
also apply to multi-party human-human-machine
dialogues but this remains to be tested.

The primary focus of our studies so far has been
to mark up communication problems caused by the
system because the emphasis was on investigating
how system interaction could be improved to
achieve a smooth dialogue with users. Of course,
users also commit errors from time to time which
can be the direct cause of a communication prob-
lem. User errors have only been investigated to a
limited extent in this connection, i.e., in their own
right (Dybkjær et al. 1998a) and we still lack de-
tailed knowledge of their mechanisms. We are
mainly interested in those cases of user errors that
are triggered by inappropriate system interaction.
However, it seems likely that the human interlocu-
tor is able to cause the same categories of commu-
nication problems as the system does, i.e. by
violating the guidelines listed in Figure 1.

3 Coding Scheme Description

Communication problems span a wide range of
phenomena. They refer either to (1) some item of
information which was omitted, (2) to a single
word causing problems, (3) to several words, (4) a
whole utterance, (5) several utterances (or turns),
or even, in principle, (6) more than one dialogue
which led to the miscommunication. In practice,
communication problems most frequently refer to
the first four of the options mentioned. Further-

 5

more, the markup of communication problems is
not always non-contiguous but may be contiguous
or even overlap in various ways.

Mark-up of communication problems normally
references an orthographic transcription and a file
containing types of violations. The latter is edited
along with the coding. The types of violation again
reference the guidelines for cooperative dialogue,
cf. Figure 2.

Communication problems are tagged as types
of violation of the guidelines for co-operative spo-
ken dialogue. A particular guideline may be vio-
lated in several different ways. For example, GG7
(avoid ambiguity) would be violated by not saying
whether the time "9 o’clock" given to the user by
the system means 9 am or 9 pm. Another type of
violation of the same guideline might occur if it
was not made clear whether a certain flight arrival
time refers to that given by the timetable or to the
actual expected arrival time.

Figure 2. File organisation for a corpus annotated
with respect to communication problems. An ar-
row from A to B means that elements in A refer to
elements in B.

Such violation types are necessarily task-
dependent as they refer to concrete problems found
in dialogues with particular applications. An exten-
sive collection of examples of communication
problems, violation types, and references to the
guidelines can be found in (Bernsen et al. 1998)
and at http://www.disc2.dk/tools/codial/index.html.

The set of tags (elements and attributes) used
by the communication problems coding scheme is
small and simple, even if the three-component
structure shown in Figure 2 is used. It is, however,
a non-trivial task to identify communication prob-

lems and analyse them correctly to determine
which guidelines they violate and how, i.e., which
types of violation we are dealing with.

Guidelines may at times support one another,
but at other times conflict when applied during
actual interaction design. When guidelines conflict,
the designers have to trade off different design op-
tions against one another, perhaps, for example, by
giving the options a weighting of some kind de-
pending upon the guideline(s) referred to. When
designing a system introduction, for instance, de-
velopers may find that GG2 (don’t say too much)
conflicts with GG1 (say enough), SG4 (tell what
the system can and cannot do), and SG5 (instruct
on how to interact with the system). If the
introduction is long and complex, even if all the
points made are valid and important, users tend to
get bored and inattentive. On the other hand, if the
introduction is brief or even non-existent, impor-
tant information may have been left out, increasing
the likelihood of miscommunication during task
performance.

During the detection and analysis of communi-
cation problems, an orthographic transcription of
the dialogue is used. Often, however, the logfile
will have to be inspected as well, cf. (Dybkjær et
al. 1998b). In a few situations, it may even be nec-
essary to have access to the sound files or to a
phonetic transcription in order to determine the
occurrence of an ambiguous utterance in the ortho-
graphic transcription (which would be clarified in
the spoken version due to intonation). For exam-
ple, some questions have the same form as state-
ments, and only the information provided by the
intonation will reveal whether it is one or the other.

3.1 Coding Modules

In the following, we present the coding modules
for communication problems, violation types, and
guidelines, cf. Figure 2. A coding module encapsu-
lates the specification of a coding scheme. In terms
of formal languages, a coding module can be seen
as an abstract type or class specification, exposing
its element declarations to the world. Slots for
commenting on, e.g., coding purpose, coding level,
and data sources are available, cf. (Dybkjær et al.
1998b).

 6

Communication Problems Guidelines Coding
Module

Name: Guidelines.
Coding purpose: Records the different generic
and specific guidelines, the violation of which
typically leads to communication problems in spo-
ken human-machine dialogue.
Coding level: Communication problems.
Data sources: List of generic and specific guide-
lines for co-operative dialogue design.
Module references: None.
Markup declaration:

ELEMENT aspect
ELEMENT guideline
ATTRIBUTES

aspect: REFERENCE(this, as-
pect)
gricean: ENUM (yes|no)
subsumed_by:
REFERENCE(this, guideline)
abbreviation: TEXT

Description: Two elements are used to annotate
the guidelines. One is aspect. aspect is used to
indicate a grouping of the guidelines. For example,
the 24 guidelines in Figure 1 are divided into seven
groups or aspects. The element aspect has no
explicit attributes.

A second element is guideline which marks
up a particular guideline. guideline has four at-
tributes.

aspect is mandatory. It is a reference to the
aspect to which the guideline belongs. The aspect
indicated for a specific guideline must always
equal the aspect indicated for the generic guide-
line by which it is subsumed.

gricean is mandatory for guidelines which are
the same as Grice's maxims (Grice 1975). The yes
value is used to indicate a maxim. For non-maxims
gricean is optional. If indicated, the no value
must be chosen. Using the value yes indicates
whether a certain guideline is one of Grice's max-
ims.

subsumed_by should always be used for spe-
cific guidelines to indicate by which generic guide-
line it is subsumed. subsumed_by cannot be used
for generic guidelines.

abbreviation is optional but recommended.
It provides an abbreviated form of the guideline. It
carries the essential meaning and may be easier to

remember than the "canonical" expression of the
guideline.

In fact, all elements also have a mandatory at-
tribute id which is a unique identifier. If a tool is
used the id should be generated automatically
Examples:
<aspect
id="1">Informativeness</aspect>
...
<guideline id="GG1" aspect="#1"
gricean="yes" abbreviation="Say
enough">Make your contribution
as informative as is required
(for the current purposes of the
exchange).</guideline>
<guideline id="SG1" aspect="#1"
subsumed_by="#GG1" abbrevia-
tion="State commitments explic-
itly">Be fully explicit in
communicating to users the com-
mitments they have
made.</guideline>
...
Coding procedure:
The guidelines for co-operative dialogue design are
part of the coding module for communication
problems defined below. However, they may also
be re-used in other coding modules for communi-
cation problems. If a user, defining a new commu-
nication problems module, should want to build on
a different set of guidelines it may well be that s/he
can still reuse the coding module for guidelines
defined here. Encoding a set of guidelines using
the present coding module is not very complicated
and the following procedure is recommended as
sufficient:

• Encode by coder 1.

• Check by coder 2.

Creation notes:
Authors: Hans Dybkjær and Laila Dybkjær.
Version: 1 (25 November 1998), 2 (19 June

1999).
Comments: None.
Literature: (Bernsen et al 1998).

Violation Types Coding Module

Name: Violation_types.
Coding purpose: Records the different ways in
which generic and specific guidelines are violated
in a given corpus, i.e. the types of problems found

 7

in the corpus. The corpus is implicitly given by a
communication problems coding file referring to
the problem type coding file as well as to a tran-
scription.
Coding level: Communication problems.
Data sources: List of types of violations of generic
and specific guidelines for co-operative dialogue
design. The list is generated during analysis of a
corpus with respect to communication problems.
Module references: Module Guidelines.
Markup declaration:

ELEMENT vtype
ATTRIBUTES

instance_of:
REFERENCE(Guidelines,
guideline)
alternative_instances:
REFERENCE(Guidelines,
guideline+)

Description: Each description of a violation type
is annotated by the element vtype. This element
has two attributes.

The attribute instance_of is mandatory. in-
stance_of is a reference to a particular guideline
in a file which contains the guidelines for co-
operative dialogue.

alternative_instances is optional. Guide-
lines overlap and in some cases the coder may be
in doubt whether one or the other guideline was
violated. The attribute alternative_instances
allows the coder to express this doubt by letting
him/her indicate one or more (this is what ‘+’
means) other guidelines than the one referred to by
instance_of.

The body of vtype contains the description of
the actual type of violation.
Example:
<vtype id="SG4-1" in-
stance_of="Guidelines-
1999#SG4">Too little said on
what system can and cannot do:
BA often missing; time-table en-
quiries always missing.</vtype>
Coding procedure: Each communication problem
is seen as a certain type of violation of a guideline.
The violation types are highly task dependent. The
file containing these types is built in parallel with
the analysis and markup of communication prob-
lems. This file is very special in the sense that its
contents, i.e. the text, as well as the markup are
created at the same time and by the coder. The

contents are textual descriptions of the violation
types. We recommend to use the same coding pro-
cedure for violation types as for markup of com-
munication problems since the two actions are
tightly connected. As a minimum, the following
procedure should be followed:

• Encode by coders 1 and 2.

• Check and merge codings (performed by
coders 1 and 2 until consensus).

Creation notes:
Authors: Hans Dybkjær and Laila Dybkjær.
Version: 1 (25 November 1998), 2 (19 June

1999).
Comments: None.
Literature: (Bernsen et al. 1998).

Communication Problems Coding Module

Name: Communication_problems.
Coding purpose: Records the different ways in
which generic and specific guidelines are violated
in a given corpus. The communication problems
coding file refers to a problem type coding file as
well as to a transcription.
Coding level: Communication problems.
Data sources: Dialogue corpora.
Module references: Module Ba-
sic_orthographic_transcription; Module Viola-
tion_types.
Markup declaration:

ELEMENT comprob
ATTRIBUTES

vtype: REFERENCE (Viola-
tion_types, vtype)

wref: REFERENCE (Ba-
sic_orthographic_transcri
ption, (w,w)+)

uref: REFERENCE (Ba-
sic_orthographic_transcri
ption, u+)

caused_by: REFERENCE (this,
comprob)

temp: TEXT
ELEMENT note
ATTRIBUTES
wref: REFERENCE (Ba-

sic_orthographic_transcri
ption, (w,w)+)

uref: REFERENCE (Ba-
sic_orthographic_transcri
ption, u+)

 8

Description: In order to annotate communication
problems caused by inadequate systems design, we
use the element comprob. It refers to some kind of
violation of one of the guidelines listed in Figure 1.
The comprob element may be used to mark up
any part of the dialogue which caused the commu-
nication problem. Thus, it may be used to annotate
one or more words, an entire utterance, or even
several utterances in which a communication prob-
lem was detected. The comprob element has five
attributes.

The attribute vtype is mandatory. vtype is a
reference to a particular description of a guideline
violation in a file which contains the different
kinds of violations of the individual guidelines.

Either wref or uref must be indicated. Both
these attributes refer to an orthographic transcrip-
tion. wref delimits the word(s) which caused a
communication problem, and uref refers to one or
more entire utterances which caused a problem.

The attribute caused_by is optional. In some
cases a communication problem in a dialogue will
be caused by a problem which occurred earlier in
that dialogue. caused_by is used to refer to a
communication problem which was found else-
where in the dialogue and which led to the present
communication problem.

temp is an optional attribute. It indicates a tem-
porary markup. It usually takes a few dialogues
before the coder gets a good grasp of the types of
guideline violations which tend to occur in the cor-
pus and what caused them. Often logfile inspection
will be needed to make an exact diagnosis. More-
over, some problems become easier to detect when
comparing a few dialogues. Thus, temp is mainly
for use during initial markup of a corpus but may
also be used later if it is practical to make some
temporary notes before making the final diagnosis.
The vtype attribute overrides whatever commu-
nication problems the attribute temp indicates.

In the beginning of the analysis, the vtype at-
tribute may be left open and the temp attribute
filled in to describe the kind of guideline violation
identified. Very soon, however, a file containing
the violation types should be established and, in
most cases, the temp comments can simply be
moved to this file and possibly modified to provide
a violation type description. Note that due to this
and to the coding procedure requiring at least two

coders, the violation type references in the vtype
attribute are likely to eventually be re-classified.

The note element can be used anywhere in a
corpus to comment on whatever the user wants to
highlight. It refers to one or more words, or one or
more utterances, in the same way as the comprob
element. The body of the note element contains
text.

Example:
The following example of communication prob-
lems markup assumes the snippet of a transcription
from the SUNDIAL corpus below and refers to the
example in the violation types coding module:

<u id="S1:7-1-sun"
who="S">flight information brit-
ish airways good day can I help
you</u>
<comprob id="3"
vtype="Sundial_problems#SG4-1"
uref="Sundial#S1:7-1-sun"/>
<note id="2" uref="Sundial#S1:7-
1-sun">The system provides too
little information about its ca-
pabilities and limitations. The
risk is that the user will be
misled and assume stronger or
weaker system capabilities than
are actually present. The intro-
duction suggests that users can
ask about anything to do with
British Airways flights. No cur-
rent system is likely to be able
to do that. Another interpreta-
tion of the system's introduc-
tion is that it is owned by
British Airways but can answer
any question about flights. The
former interpretation seems the
most natural one. So the sys-
tem's opening probably should
not be deemed ambiguous.</note>
Coding procedure: We recommend to use the
same coding procedure for markup of communica-
tion problems as for violation types since the two
actions are tightly connected. As a minimum, the
following procedure should be followed:

• Encode by coders 1 and 2.

• Check and merge codings (performed by
coders 1 and 2 until consensus).

 9

Creation notes:
Authors: Hans Dybkjær and Laila Dybkjær.
Version: 1 (25 November 1998), 2 (19 June

1999).
Comments: For guidance on how to identify

communication problems and for a
collection of examples, the reader is
recommended to look at
http://www.disc2.dk/tools/codial/inde
x.html.

Literature: (Bernsen et al. 1998).

4 Application and Evaluation of the Cod-
ing Scheme

The guidelines have been applied to dialogues re-
flecting various task types, including flight ticket
reservation, flight information, and train timetable
information, and spanning development stages
from early design to late evaluation. Also, the dia-
logue types have been different, including both
system-directed and mixed-initiative dialogue.

We have tested intercoder agreement by apply-
ing the coding scheme to part of a corpus from the
SUNDIAL project (Peckham 1993). The corpus
comprises close to 100 early WOZ dialogues in
which subjects seek time and route information on
British Airways flights and sometimes on other
flights as well. We selected 48 dialogues, such that
each subject is represented with an approximately
equal number of dialogues and each scenario (24 in
total) is used in two dialogues. Two experts (A1
and A2) and one novice (A3) used the coding
scheme. Three dialogues were used for training.

The two experts independently analysed 30 dia-
logues. Each detected violation was then discussed
in detail and a typology of violations established.
Violation types are task-dependent. The typology
is useful for revising the dialogue model. The
number of individual violations may support esti-
mates of system performance and acceptability but
is of little importance otherwise, as many viola-
tions are identical. In a corpus containing as many
guideline violations as the SUNDIAL corpus, it is
very time consuming, if not practically impossible,
to find all the individual violations. It is also un-
necessary, because what is needed for repairing the
dialogue design are the types of guideline viola-
tions that occur. As shown in Figure 3, many indi-
vidual violations were found by both experts
(identities) but even more were found by either A1

or A2 (complementarity). However, all agreed vio-
lations could be classified under 24 different types.
Of these, 15 were found by both experts whereas 9
types were found by either A1 or A2. Upon closer
analysis, the cases belonging to 6 of the 9 comple-
mentary types turned out to be part of complex
violations, i.e. utterances violating more than one
guideline at the same time, which had been discov-
ered by both experts. The remaining 3 types only
covered 1 case each.

Having discussed and classified 30 dialogues,
the experts analysed another 15 dialogues from the
SUNDIAL corpus using the corpus-dependent ty-
pology established during the analysis of the first
30 dialogues. This facilitated dialogue annotation
which could be reduced to references to a growing
set of violation types. As shown in Figure 3, many
more identical cases were found by the two experts
in the last 15 dialogues. This is probably a result of
their having discussed the findings in the first 30
dialogues. Slightly more type identities were found
but also slightly more type complementarities.

 First 30

dialogues
Last 15
dialogues

Case identities
(found by both experts)

81 92

Case complementarity
(found by one expert)

133 41

Alternatives
(different classifica-
tions)

7 3

Undecidable 1 0
Disagreements 21 2
Rejects 18 3
Type identities 15 17
Type complementarity 9 12

Figure 3. Results from the analysis of two sets of
SUNDIAL dialogues by two experts in using the
coding scheme.

However, all cases belonging to 8 of the 12
complementary types were part of complex viola-
tions that had been discovered by both experts. The
remaining 4 types only covered one case each.

We also introduced a linguist to the coding
scheme (A3). By way of introduction, A3 received
the co-operativity guidelines (cf. Figure 1), a paper
on their background and development, including
examples of guideline violations, and a detailed

 10

coding scheme application walkthrough of three
SUNDIAL dialogues. The complete analysis of
one of these dialogues was given to him on paper.
Having independently analysed a first set of 15
dialogues, A3 asked for, and had, a joint walk-
through of one of those. A3 received no detailed
written information on how to use the guidelines.

We analysed the correspondence between the
findings of the two experts and those of the novice.
Since the two experts had thoroughly discussed
their findings after having analysed 30 of the 45
dialogues, thereby improving their performance on
the last 15 dialogues, the following novice/expert
comparison is based on the first 30 dialogues alone
(cf. Figure 3, Column 2).

A3 found a total of 154 cases and 14 types, i.e.
80% of the average number of cases found by A1
and A2, and 72% of the average number of types
found by A1 and A2. A3 found 10, or 42%, of the
24 types found by A1 and A2, and he found 4 new
types. Three of these were part of complex viola-
tions that already had been observed by A1 and/or
A2. The last type which covered only one case was
not found by the two experts. Of the 154 cases
found by A3, 26 cases were rejected, disagreed
with, or considered undecidable by A1 and A2.
This should be compared to an average of 20 such
cases found by the two experts.

Taking into account that A3 never received any
formal instructions on how to use the guidelines
but had to generalise from examples, his perform-
ance would seem acceptable.

5 On-line versus Off-line Tagging

So far, tagging of communication problems using
the NISLab coding scheme has always been done
off-line at design time or evaluation time. Tagging
has not been done on-line while a spoken dialogue
system was running. The tagging has aimed to de-
tect and diagnose problems in user-system interac-
tion and, on this basis, propose improved dialogue
model design. Tagging has not been viewed as a
means to make on-line improvements of dialogue
interaction.

Based on the communication problems coding
described above, we are wondering whether, and in
what sense, or faced with which kinds of phenom-
ena, it might be possible to do on-line tagging-
cum-repair of communication problems. It should
be kept in mind that communication problems tag-

ging, as described above, involves problem diag-
nosis followed by possible re-classification of the
problem identified. This means that improvement
may have to be done to any of the system’s mod-
ules. Diagnosing a problem consists in deciding
which module, if any, has to be corrected and how.
For instance, it may be that the database has to be
extended to better cover the domain, it may be that
the output phrasing should be changed to avoid an
obscure system utterance, or it may be that the dia-
logue manager needs better meta-communication
abilities. It is hard to see how these modifications
could be made on-line.

On the other hand, the spoken dialogue systems
we build today actually do incorporate an increas-
ing range of on-line mechanisms for bringing the
dialogue back on track in case of, e.g., low recog-
niser confidence scores, parsing problems, user
repair attempts, ambiguous user input, etc. In iden-
tifying and solving those problems, however, the
system does not use tagging and coding schemes in
any obvious sense of the term. Rather, some mod-
ule detects the problem and the same or some other
module fixes the problem.

References
Bernsen, N.O., Dybkjær, H. and Dybkjær, L.: Coopera-

tivity in human-machine and human-human spoken
dialogue. Discourse Processes, Vol. 21, No. 2, 1996,
213-236.

Bernsen, N.O., Dybkjær, H. and Dybkjær, L.: Designing
Interactive Speech Systems. From First Ideas to User
Testing. Berlin: Springer Verlag 1998.

Dybkjær, L., Bernsen, N.O. and Dybkjær, H.: A meth-
odology for diagnostic evaluation of spoken human-
machine dialogue. International Journal of Human
Computer Studies, 48, 1998a, 605-625.

Dybkjær, L., Bernsen, N.O., Dybkjær, H., McKelvie, D.
and Mengel, A.: The MATE Markup Framework.
MATE Deliverable D1.2, NISLab, 1998b.

Grice, P.: Logic and conversation. In Cole, P. and Mor-
gan, J.L., Eds. Syntax and Semantics, Vol. 3, Speech
Acts, New York, Academic Press, 1975, 41-58.

Mengel, A., Dybkjær, L., Garrido, J., Heid, U., Klein,
M., Pirrelli, V., Poesio, M., Quazza, S., Schiffrin, A.
and Soria, C.: MATE Dialogue Annotation Guide-
lines. MATE Deliverable D2.1, NISLab, 2000.

Peckham, J.: A new generation of spoken dialogue sys-
tems: Results and lessons from the SUNDIAL pro-
ject. Proceedings of Eurospeech ‘93, Berlin, 1993,
33-40.

